Investigation of Strength and Cracking Behaviour of ZnCo$_2$O$_4$ Nanoparticles Incorporated Porous Concrete

K. Shanmugam1, M. Arivanandhan1, R. Jayavel1,2,*

1Centre for Nanoscience and Technology, Anna University, Chennai – 600 025, Tamil Nadu, India.
2Crystal Growth Centre, Anna University, Chennai – 600 025, Tamil Nadu, India.

1. Introduction

The quality and admixture control are one of the major problems of the concrete pavement, which is typically used for road surfaces, heavy load container, bridge decks, airfield runways and parking lots [1]. It is important to characterize the discharge from all sites, so that pollution control plans may be developed. Porous concrete is a highly practical type of nanomaterials, which has great performance and appropriate strength. It can also form with less aggregate and water-controlled pieces [1, 2]. Consequently, the types of cementation materials, which crack into small fragments having sufficient static strength to be used for building material, were developed [3–6]. The major difference between commercial concrete and experimental porous concrete is that porous concrete has a continuous network of aggregates from the bottom to top, which is essential that improves the strength of the basic material [2, 6].

The binary transition metal oxides such as ZnCo$_2$O$_4$ are low-cost and environmentally friendly. In the structure, Zn occupies tetrahedral site and Co is located at the octahedral site. ZnCo$_2$O$_4$ is complex and analogous to the Co$_2$O$_3$ crystal structure with the replacement of Co$^{2+}$ by Zn$^{2+}$ ions [7]. ZnO, CuO and Al$_2$O$_3$ composites with concrete specimen have been shown to have good structural properties and high strength [8–10]. Hence, the cement concrete with ZnCo$_2$O$_4$ binary oxide admixture will have higher strength and structural properties, which is not reported yet.

British Standard Institution in 2009, ASTM and AASHTO permitted the use of limestone up to 5% in ordinary Portland cement (OPC) as a part of a change to ASTM C150/AASHTO M85 [2, 7]. Still the restrictions that have been investigated both commercially and experimentally are aggregate grading, which controls the porosity and pore size distribution of the microcube. This has a significant effect on the strength as well as the structural properties of porous concretes. In recent days, only a few studies have been focused on the cement with coarse and concrete product conversion development. Mostly glass, recycled glass, steel slag, steel fiber, tires and plastics are used. In concrete admixture, the disposal problems and developments are very difficult compared to the commercial technology [5, 6]. However, due to the limitations of greater strength and stability in concrete mixture, different materials have been searched with focus on their physical, structural and mechanical properties for structure development [7]. Consequently, addition of materials like admixture, super-plasticizer cement and nanomaterials has been practically tried to improve the properties of concrete pavement [11–13].

In this study, the introduction of binary nanoparticles, which probably could improve the mechanical and durable properties of cementitious composites has been investigated. Different types of cracks developed in the concrete structure were investigated by SEM. The enhanced strength of nanoparticles incorporated concrete was confirmed through the study of compressive strength. The effect of incorporation of ZnCo$_2$O$_4$ nanoparticles into the concrete materials has been systematically studied.

2. Experimental Methods

2.1 Synthesis of ZnCo$_2$O$_4$

For the synthesis of ZnCo$_2$O$_4$ nanostructures [7], 0.5 M of cobalt nitrate (Co(NO$_3$)$_2$.6H$_2$O) and 0.25 M of zinc nitrate (Zn(NO$_3$)$_2$.4H$_2$O) were dissolved in 60 mL de-ionized (DI) water and stirred at room temperature for 30 min to achieve the homogeneous solution. To prepare the double hydroxide solution, 1 g of mixed hydroxide (NaAl(OH)$_3$) was dissolved in 20 mL of ultrapure water and stirred for 30 min. After that, the two solutions were mixed with continuous stirring for 1 h at 60 °C and maintained for 6 h in an oil bath to ensure the homogeneity of the mixed solution. Finally, the black colour product of ZnCo$_2$O$_4$ nanoparticles was washed with water and ethanol. The filtered samples were dried on vacuum oven 60 °C for 24 h, after that sprayed sample was calcined at 500 °C for 5 h.

2.2 Synthesis of ZnCo$_2$O$_4$ and Admixture with Concrete Specimen

The cement used is the ordinary Portland cement (Grade 43) from the Associated Cement Companies Limited in India. The fine aggregate used is the natural siliceous sand and ASTM C-53 [2]. Drinkable clean water, fresh and free from impurities was used for mixing and curing the tested samples according to the Indian code of practice. The series mixtures were prepared by mixing the coarse aggregates, fine aggregates, cement materials and 5 g of prepared ZnCo$_2$O$_4$ nanoparticles in a laboratory concrete drum mixer. They were mixed in dry condition for 10 minutes, and 5 minutes after adding water. Materials of the fresh concrete were observed immediately to maintain the flexural strength following by the mixing procedure. Cube of size 150 mm3 were cast and compacted for flexural strength tests [14]. Finally, moulds were covered with polyethylene sheets and moistened for 10 h. Then, the specimens were subjected to curing in saturated water for 28 days.
demoulded and cured in water at room temperature prior to the experimental procedure. The tensile strength tests of the concrete samples were determined at 28 days. The proportion of the admixtures in the concrete specimens reported results were the average of three replicates.

2.3 Characterizations and Calculations

The microstructural analysis was performed using SEM (TESCAN VEGA 3) after compression test. The compressive strengths of the concrete mixtures were measured for the 150 mm cube specimens in accordance with BS EN 12390-3 using a digitally controlled compression machine with an extreme load capacity between the ranges of 500 to 700 kN. These micro

Table 1 Ratio of the concrete mixtures with corresponding grade values

<table>
<thead>
<tr>
<th>Cement</th>
<th>Sand</th>
<th>Aggregate</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>Correspond to M-53</td>
</tr>
<tr>
<td>1</td>
<td>1.5</td>
<td>3</td>
<td>Correspond to M-53</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>Correspond to M-53</td>
</tr>
</tbody>
</table>

2.4 Compressive Strengths

The compressive strengths of the concrete mixtures were measured for the 150 mm cube specimens in accordance with BS EN 12390-3 using a digitally controlled compression machine with an extreme load capacity between the ranges of 500 to 700 kN. Before starting the test, any noticeable moisture was detached from the specimens. Thereafter, any movable gravel or any other material that could be in interaction with the filling plate were cleaned from the specimens of the surfaces. The specimens were then located in the challenging machine perpendicular to the axis of the concrete cast. A constant stacking rate of 0.3 MPa/s was used throughout the tests. The load and vertical dislocation were recorded until the specimen becomes unsuccessful and the maximum load in kN was recorded. These tests were carried out for both the orientation and modified concrete mixes at ages of 7 days and ZnCoO

Fig. 2 SEM Images of (a,b) ZnCoO nanoparticles at different zone after compression test by 28 days. The developed 3D formation is due to the interaction between ZnCoO nanoparticles and silica particle, and ZnCoO particle-wall at aggregations are formed. For the high strength concrete structure, the interface between two aggregate particles was known as sphere-wall (S-W) and the interface between particle and wall was called sphere-particle (S-P) [15,16]. Mean pore of the specimens studied by 28 days with different size of pores was also estimated. Noticeably large pore size was observed after 28 days specimens with increase in the higher contact surface with strong strengthening properties.

In concrete, "feebler planes" are observed at the interface of the cement sealant and the ZnCoO nanoparticles aggregate. The micro-cracks that appear at the boundary tend to transmit along the nanoparticle’s aggregate surfaces morphology. These micro-cracks can association to form macro-cracks were influences of the ZnCoO nanoparticles shown in Fig. 2(c). In accumulation there can be "ZnCoO nanoparticles aggregate cracks" which run complete the matrix material, as well as "aggregate cracked" which tend split apart the aggregates structure in Fig. 2(d). The internal micro-cracks and micro-voids are reflected by macroscopic stress-strain behaviour of the concrete [17,18]. For uniaxial compression, growth of micro-racks aligns to the direction of stress softening. The steel reinforcement reduces crack widths: stiffening effect on the crack behaviour [19]. For 7 days of compressive test, the surface structure clearly shows weak interaction because of the less formed cracks, very small particles and increased oxygen content. Large porous formation is ascribed to the large number of hydrate groups and aggregated particles as shown in Fig. 2(e). After 28 days of the compressive test, the surface structure clearly seen strong interaction because it has formed length cracks, a smaller number of hydrate groups and aggregated shape of particles of the mixtures concrete (Fig. 2f). After 28 days, the specimens cube strength and density of the ZnCoO nanoparticles was increased.

Fig. 2 SEM Images of concrete microcube at different zone after compression test by 28 days.

https://doi.org/10.30799/jesp.172.19050403

3.2 Energy Dispersive X-Ray Spectrum

The EDX spectrum shown in Fig. 3 confirmed the presence of Zn, Co and O elements with an atomic ratio of zinc (21%), cobalt (38%) and oxygen (41%), during the formation of spinel phase of ZnCo2O4 nanoparticles.

Fig. 3 EDAX spectrum of ZnCo2O4 nanoparticles

3.3 Investigation of Compressive Strength

Table 2 shows the compressive strength of concrete specimens after 7 and 28 days of compressive test with and without ZnCo2O4 curing. It was observed that porous concrete (28 days) possesses a very different breaking behaviour compared to commercial concrete and 7 days concrete specimens. Each specimen shall be a concrete core with a diameter of 150 mm. Cores shall be through the entire thickness of the porous concrete path. The minimum amount of the core to create a flat surface is perpendicular to the length of the core. Tensile strength is the quantity of flexible stress that a material can resist before failing. Compressive strength is the quantity of compressive strength that a material can resist before failing [19]. The test specimen is exposed to a compressive load to usually from a hydraulic machine recorded until the failure occurs [16]. So, the controlled structural and mechanical characteristics of the micropore possess better strength and density compared with commercial micropore. The increased compressive strength may be due to the large quantity of ZnCo2O4 nanoparticles present in the admixture. This is important for the excess silica leaching out and producing a deficiency in strength as it replaces part of the cementitious material. The fragmentation performances of different porous concrete admixtures also strongly depend on the aggregate grading.

Table 2 Compressive results of the concrete microcube tested after 7 days, and ZnCo2O4/concrete microcube at different zone after compression tested after 28 days stability

<table>
<thead>
<tr>
<th>Specimen ID</th>
<th>Age of test</th>
<th>Dimensions (in mm)</th>
<th>Weight (Kg)</th>
<th>Density (Kg/m³)</th>
<th>Load (KN)</th>
<th>Strength (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial 28</td>
<td>150.0</td>
<td>150.0</td>
<td>150.0</td>
<td>0.81</td>
<td>2012</td>
<td>414.7</td>
</tr>
<tr>
<td>1303765A</td>
<td>7</td>
<td>150.0</td>
<td>150.0</td>
<td>150.0</td>
<td>8.48</td>
<td>2512</td>
</tr>
<tr>
<td>1303765B</td>
<td>7</td>
<td>150.0</td>
<td>150.0</td>
<td>150.0</td>
<td>8.51</td>
<td>2522</td>
</tr>
<tr>
<td>1303765C</td>
<td>7</td>
<td>150.0</td>
<td>150.0</td>
<td>150.0</td>
<td>8.53</td>
<td>2528</td>
</tr>
<tr>
<td>1303765D</td>
<td>28</td>
<td>150.0</td>
<td>150.0</td>
<td>150.0</td>
<td>8.48</td>
<td>2512</td>
</tr>
<tr>
<td>1303765E</td>
<td>28</td>
<td>150.0</td>
<td>150.0</td>
<td>150.0</td>
<td>8.57</td>
<td>2539</td>
</tr>
<tr>
<td>1303765F</td>
<td>28</td>
<td>150.0</td>
<td>150.0</td>
<td>150.0</td>
<td>8.59</td>
<td>2545</td>
</tr>
</tbody>
</table>

4. Conclusion

ZnCo2O4 nanoparticles were synthesized by co-precipitation method. The concrete specimens were prepared with and without incorporating ZnCo2O4 particles and subjected to compression test after 7 and 28 days. The influences of ZnCo2O4 nanoparticles on durability and compression properties of concrete specimens were experimentally investigated. It was observed that porous concretes have a very different breaking behaviours compared to commercial concrete. SEM images showed the cracking patterns of porous concretes providing insights on the material performance. In porous concretes, cracks are required to propagate into locations indicated by the aggregate microstructure and the pore distribution. The compressive strength showed higher strength of the concrete obtained by completely filled ZnCo2O4 nanoparticles on porous concrete with the paste content. The results showed enhanced strength of the porous concrete microcubes for safety applications that required a numerous fragmenting cementitious material and can be used for different environmental risks like typhoon, raining, and earth quake with long life.

References