Nano Analyses of Protective Film Formed by L-Alanine - Zinc Ion System onto Carbon Steel

A. Sahaya Raja
N. Rajendran
V. Prathipa
S. Rajendran

1PG & Research Department of Chemistry, G.T.N. Arts College, Dindigul – 624 005, TN, India.
2Department of Chemistry, P.S.N.A. College of Engineering & Technology, Dindigul – 624 622, TN, India.
3Corrosion Research Centre, RVS School of Engineering and Technology, Dindigul – 624 005, TN, India.

ABSTRACT

We are reporting L-alanine as inhibitor for carbon steel in well water was studied using weight loss technique. The results indicate that the L-alanine functioned as a good corrosion inhibitor for the tested system. The inhibition efficiency increases with increasing L-alanine concentration. Synergistic effects increased the inhibition efficiency in the presence of zinc ions. Tafel results indicated that L-alanine is an anodic inhibitor. Adsorption of the used inhibitor led to a reduction in the double layer capacitance and an increase in the charge transfer resistance. Fluorescence spectral analysis was used in detecting the presence of an iron – inhibitor complex and the coordination sites of the metal inhibitor with iron were determined by the FT-IR spectra. Scanning electron microscopy (SEM) study confirmed that the inhibition of corrosion of carbon steel is through adsorption of the Inhibitors molecule on the surface of the metal. Energy dispersive analysis of X-rays (EDAX) shows that in the presence of inhibitors the suppression of Fe peaks, additional line of N and Zn signal & enhancement in ‘C’ and ‘O’ signal. These data show that metal surface is covered by adsorbed layer of inhibitors molecule that protects carbon steel against corrosion. The surface morphology of the protective film (nano film) on the metal surface was characterized by using atomic force microscopy (AFM). A suitable mechanism of corrosion inhibition is proposed based on the results obtained from weight loss study, electrochemical study and surface analysis technique. The eco-friendly inhibitor L- alanine - Zn2+ system may find application in cooling water system.

1. Introduction

Corrosion is a naturally occurring phenomenon which deteriorates a metallic material or its properties because of a reaction with its environment. Corrosion can cause dangerous and expensive damage to everything from pipelines, bridges and public buildings to vehicles and even home appliances. It is one of the most serious problems in the oil and gas industry. Inhibition of corrosion and scaling can be done by the application of inhibitors. It is noted that the effect of corrosion inhibitors is always caused by change in the state of surface being protected due to adsorption or formation of hardly soluble compounds with metal cations.

Most of the effective inhibitors are compounds containing in their structures nitrogen, phosphorus, and/or sulphur. Heteroatom such as nitrogen, oxygen, and sulphur are capable of forming coordinate covalent bond with metal owing to their free electron pairs and thus, acting as inhibitor [1,2]. Many researchers were interested in biochemical compounds based on amino acids, which exhibit excellent properties such as good water solubility and rapid biodegradability [4,5]. These inhibitors used in protection against the corrosion of certain metals such as nickel, cobalt, copper, iron, and steel [6,7].

The amino acids are the building block of proteins. All amino acids have a central or alpha carbon, to which are bonded four groups; hydrogen, an amino, a carboxyl group, and a unique side chain, also known as R-group [6]. These molecules differ in their unique side chain, which can be used to classify the molecules into functional types. Various amino acids have been used to inhibit the corrosion of metals and alloys [8-12]. Eco-Friendly Inhibitor L-Cysteine-Zn2+ System to control corrosion of carbon steel in Aqueous Medium [13]. The corrosion of SS 316L has been inhibited by glycine, leucine, valine, and arginine [10]. Sivakumar et al have used L-histidine to prevent corrosion on carbon steel [14]. Cystein, glycine, glutamic acid, and glutathione have been used as corrosion inhibitor to prevent the corrosion of copper in HCl [12]. Amino acid such as DL-phenylalanine has been used to prevent corrosion of carbon steel [15]. The corrosion of brass in O2- free NaOH has been prevented by methionine [16]. Sahaya Raja et al have used Glycine along with Zn2+ to prevent corrosion of carbon steel in well water [17]. Arginine - Zn2+ system has been used to inhibit corrosion of carbon steel [18]. Perusal of several literatures reveals that there is no information regarding the use of L-alanine in combination with zinc ion (Zn2+) as corrosion inhibitor. This paper focuses on the IE of L-alanine in controlling corrosion of carbon steel immersed in Well water in the absence and presence of Zn2+. The investigation is performed based on weight loss method, polarization technique and AC impedance spectroscopy. The morphology of the protective film (nano film) was examined by Fluorescence spectra, FTIR spectra, SEM, EDAX and AFM techniques.

2. Experimental Methods

2.1 Surface Characterization Studies

FTIR Spectra were recorded in a Perkin – Elmer 1600 spectrophotometer. Fluorescence spectra of solutions and also the films formed on the metal surface were recorded using Jasco F – 6300 spectrophoimeter. Surface morphology studies - The surface morphology measurements of the carbon steel were examined by JEOL ISM 6390 Model. All SEM micrographs of carbon steel are taken at a magnification of X=1000. The elements present on the metal surface were examined using JOEL-6390 computer-controlled Energy Dispersive Analysis of X-Rays (EDAX). Atomic force microscope (AFM) using Veeco dimnova model with the software version of SPM Lab Analysis (version 6.3.0.0) was used to observe the samples’ surface in tapping mode, using cantilever with linear tips. The scanning area in the images was 5 μm x 5 μm and the scan rate was 0.6 Hz. All solutions were prepared using well water collected from Seelapadi, Dindigul, Tamil Nadu, India. The study was carried out at room temperature (303 K). The chosen environmental well water and its physicochemical parameters are given in Table 1.

*Corresponding Author
Email Address: spathalia@gmail.com (A.Sahaya Raja)
3.2 Analysis of Electrochemical Study

The electrochemical study such as potential-dynamic polarization and AC impedance spectra [13-16,18] of carbon steel immersed in well water in the absence and presence of inhibitors are given in Table 3. It is observed that in the presence of inhibitor system the electrochemical parameters such as corrosion potential (Ecorr) shifted from -673 to -656 mV vs SCE, corrosion current (Icorr) decreases from 5.980 x 10^{-2} A/cm^2 to 2.832 x 10^{-2} A/cm^2, charge transfer resistance (Rct) increases from 1199 Ω cm^2 to 11478 Ω cm^2 and Ca value decreases from 3.8832 x 10^{-1} F/cm^2 to 4.0560 x 10^{-2} F/cm^2. These results lead to the conclusion that a protective film is formed on the metal surface.

3.3 Surface Characterization Study

3.3.1 Analysis of the Fluoresence Spectra

Analysis of the fluorescence spectra are given the Table 4. Fluorescence spectra have been used to detect the presence of Fe^{2+} inhibitor complex formed on the metal surface [20-22]. The emission spectrum of the Fe^{2+}-L-alanine complex solution, a peak appears at 337 nm. The emission spectrum of the film formed on the metal surface after immersion in the solution containing 250 ppm L-alanine and 5 ppm of Zn^{2+}, a peak appears at 333 nm. This indicates that the film present on the metal surface consist of Fe^{2+}-L-alanine complex. The slight variation in the position of the peak is due to the fact that the Fe^{2+}-L-alanine complex is entailed in Zn(OH)_{2} present on the metal surface. Further, the increase in intensity of the peak is due to the fact that the metal surface, after the formation of the protective film is very bright, the film is very thin and there is enhancement in the intensity of the peak [21,22].

3.3.2 Analysis of FTIR Spectra

FTIR spectra have been used to analyze the protective film formed on the metal surface [23-27]. The FTIR spectrum L- alanine is shown in Fig. 1a. The C=O stretching frequency of carboxyl group appears at 1571 cm^{-1}, CN stretching frequency appears at 1127 cm^{-1} and NH stretching frequency of the amine group appears at 3090 cm^{-1} [24-26]. The FTIR spectrum of the film formed on the metal surface after immersion in the solution containing well water, 250 ppm of L-alanine and 5 ppm Zn^{2+} is shown in Fig. 1b. The C=O stretching frequency has shifted from 1571 to 1592 cm^{-1}. The CN stretching frequency has shifted from 1127 to 1202 cm^{-1}. The NH stretching frequency has shifted from 3047 to 3271 cm^{-1}. This observation suggests that L-alanine has coordinated with Fe^{2+} through the oxygen atom of the carboxyl group and nitrogen atom of the amine group resulting in the formation of Fe^{2+}-L-alanine complex on the anodic sites of the metal surface. The peak at 580 cm^{-1} corresponds to Zn-O stretching. The peak at 3524 cm^{-1} is due to OH stretching. This confirms that Zn(OH)_{2} is formed on the cathodic sites of metal surface [27]. Thus the FTIR spectral study leads to the conclusion that the protective film consist of Fe^{2+}-L-alanine complex and Zn(OH)_{2}.

3.4 Surface Morphology Studies

3.4.1 SEM Analysis of Metal Surface

SEM provides a pictorial representation of the surface. To understand the nature of the surface film in the absence and presence of inhibitors and the extent of corrosion of carbon steel, the SEM micrographs of the surface are examined [28-30]. The SEM images of carbon steel specimen immersed in well water for one day in the absence and presence of inhibitor system are shown in Fig. 2a-c. The SEM micrographs of polished carbon steel surface (control) in Fig. 2a shows the smooth surface of the metal. This shows the absence of any corrosion products (or) inhibitor complex formed on the metal surface. The SEM micrographs of carbon steel surface immersed in well water (Fig. 2b) show the roughness of the metal surface which indicates the highly corroded area of carbon steel in well water. However in Fig. 2c indicate that in the presence of inhibitor
(250 ppm L-alanine and 5 ppm Zn2+) the rate of corrosion is suppressed, as can be seen from the decrease of corroded areas. The metal surface almost free from corrosion due to the formation of insoluble complex on the surface of the metal [28]. In the presence of L-alanine and Zn2+, the surface is covered by a thin layer of inhibitors which effectively controls the dissolution of carbon steel.

AFM image analysis was performed to obtain the average roughness, Ra (the average deviation of the points roughness profile from a mean line over the evaluation length), root-mean-square roughness, Rq (the average of the measured height deviations taken within the evaluation length and measured from the mean line) and the maximum peak-to-valley (P-V) height values (largest single peak-to-valley height in five adjoining sampling heights) [36]. Rq is much more sensitive than Ra to large and small height deviations from the mean [37].

Table 5 is the summary of the average roughness (Ra), rms roughness (Rq) maximum peak-to-valley height (P-V) value for carbon steel surface immersed in different environments. The value of RMS, Ra and P-V height for the polished carbon steel surface (reference sample) are 15 nm, 11 nm and 67 nm respectively, which shows a more homogenous surface, with some places in which the height is lower than the average depth [16]. Fig. 4a displays the uncorroded metal surface. The slight roughness observed on the polished carbon steel surface is due to atmospheric corrosion. The rms roughness, average roughness and P-V height values for the carbon steel surface immersed in well water are 42nm, 36 nm and 172 nm respectively. These data indicate that the polished carbon steel immersed in well water has a greater surface roughness than the polished metal surface. This shows that the unprotected carbon steel surface is rougher and is due to the corrosion of the carbon steel in well water. Fig. 4b displays the corroded metal surface with few pits. The presence of 250 ppm of L-alanine and 5 ppm of Zn2+ in well water reduces the Rq by a factor of 1.4 from 42 nm to 29 nm respectively. These data indicate that the polished carbon steel immersed in well water has a greater surface roughness than the polished metal surface. It shows the uncorroded metal surface, which is protective in nature.

Table 5 AFM data for carbon steel surface immersed in inhibited and uninhibited environments

<table>
<thead>
<tr>
<th>Samples</th>
<th>RMS (Rq)</th>
<th>Average (Ra)</th>
<th>Maximum peak-to-valley height (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polished carbon steel</td>
<td>15</td>
<td>11</td>
<td>67</td>
</tr>
<tr>
<td>Carbon steel immersed in well water (Blank)</td>
<td>42</td>
<td>36</td>
<td>172</td>
</tr>
<tr>
<td>Carbon steel immersed in well water L-alanine (250 ppm) + Zn2+ (5 ppm)</td>
<td>19</td>
<td>17</td>
<td>83</td>
</tr>
</tbody>
</table>

3.5 Mechanism of Corrosion Inhibition

The results of the weight-loss study show that the formulation consisting of 250 ppm L-alanine and 5 ppm of Zn2+ has 83% IE in controlling corrosion of carbon steel in well water. A synergistic effect

![Image](Fig. 2 SEM analysis: a) Carbon Steel (control), b) Carbon Steel Immersed in well Water and c) Carbon Steel Immersed in well Water + 250 ppm of L-alanine + 5 ppm of Zn2+.

![Image](Fig. 3 EDAX spectra: a) Carbon steel sample after immersion in well water (blank) and b) Carbon steel sample after immersion in solution containing Well water + L-alanine (250ppm) + Zn2+ (5ppm).

![Image](Fig. 4 3D AFM Images of the Surface: a) Polished Carbon Steel(Control), b) Carbon Steel Immersed in Well Water(Blank) and c) Carbon Steel Immersed in Well Water containing L-alanine(250ppm)+Zn2+ (5ppm).
exists between Zn\(^{2+}\) and L-alanine. Polarization study reveals that this formation function as an anodic inhibitor. AC impedance spectra reveal that a protective film is formed on the metal surface. FTR spectra reveal that the protective film consists of Fe\(^{3+}\)-L-alanine complex and Zn(OH). In order to explain these facts the following mechanism of corrosion inhibition is proposed.

- When the solution containing well water, 5 ppm of Zn\(^{2+}\) and 250 ppm of L-alanine is prepared, there is formation of Zn\(^{2+}\)-L-alanine complex in solution. When carbon steel is immersed in this solution, the Zn\(^{2+}\)-L-alanine complex diffuses from the bulk of the solution towards metal surface.
- Zn\(^{2+}\)-L-alanine complex diffuses from the bulk solution to the surface of the metal and is converted into a Fe\(^{3+}\)-L-alanine complex, which is more stable than Zn\(^{2+}\)-L-alanine.
- On the metal surface Zn\(^{2+}\)-L-alanine complex is converted in to Fe\(^{3+}\)-L-alanine on the anodic sites. Zn\(^{2+}\) is released.
- The released Zn\(^{2+}\) combines with OH\(^{-}\)to form Zn(OH)\(_{2}\) on the cathodic sites.
- Zn\(^{2+}\)+2OH\(^{-}\) ---> Zn(OH)\(_{2}\)↓
- Thus the protective film consists of Fe\(^{3+}\)-L-alanine complex and Zn(OH)\(_{2}\).
- The EDAX analysis SEM micrographs and AFM images confirm the formation of protective layer (nano film) on the metal surface.

4. Conclusion

The results of the Mass loss study show that the formulation consisting of 250 ppm L-alanine, 5 ppm of Zn\(^{2+}\) has 83% IE, in controlling corrosion of carbon steel in well water. A synergistic effect exists between Zn\(^{2+}\) and L-alanine system. Polarization study reveals that the formulation functions as anodic inhibitor controlling the anodic reaction predominantly and to some extent controls the cathodic reaction. AC impedance spectra reveal that a protective film is formed on the metal surface. FTR spectral study reveals that the protective film consists of Fe\(^{3+}\)-L-alanine complex and Zn(OH)\(_{2}\). The EDAX SEM micrographs and AFM images confirm the formation of protective layer on the metal surface.

Acknowledgements

The authors are thankful to their respective management, Principal, G.T.N. Arts College, Dindigul, Tamil Nadu, India for providing the required facilities for completion of the work.

References